【阅读】Ilya的论文阅读清单

背景介绍

Ilya Sutskever 的论文清单:30u30

Ilya Sutskever 是 Hinton 的大弟子,OpenAI的联合创始人兼首席科学家。

以下是他推荐的论文清单,他认为阅读完这些内容之后就可以了解AI领域90%的内容

主要内容

核心神经网络创新

  1. Recurrent Neural Network Regularization - Enhancement to LSTM units for better overfitting prevention.
    递归神经网络正则化 - 增强了 LSTM 单元,以更好地防止过拟合。
  2. Pointer Networks - Novel architecture for solving problems with discrete token outputs.
    Pointer Networks - 用于解决离散令牌输出问题的新颖架构.
  3. Deep Residual Learning for Image Recognition - Improvements for training very deep networks through residual learning.
    用于图像识别的深度残差学习 - 改进了通过残差学习训练非常深度的网络。
  4. Identity Mappings in Deep Residual Networks - Enhancements to deep residual networks through identity mappings.
    深度残差网络中的身份映射 - 通过身份映射增强深度残差网络。
  5. Neural Turing Machines - Combining neural networks with external memory resources for enhanced algorithmic tasks.
    • 将神经网络与外部内存资源相结合,以增强算法任务。
  6. Attention Is All You Need - Introducing the Transformer architecture solely based on attention mechanisms.
    Attention Is All You Need - 介绍完全基于注意力机制的 Transformer 架构。

专业神经网络应用

  • Multi-Scale Context Aggregation by Dilated Convolutions - A convolutional network module for better semantic segmentation.
    Multi-Scale Context Aggregation by Dilated Convolutions - 一个卷积网络模块,用于更好的语义分割.
  • Neural Machine Translation by Jointly Learning to Align and Translate - A model improving translation by learning to align and translate concurrently.
    Neural Machine Translation by Joint Learning to Align and Translation - 一种通过学习同时对齐和翻译来改进翻译的模型.
  • Neural Message Passing for Quantum Chemistry - A framework for learning on molecular graphs for quantum chemistry.
    Neural Message Passing for Quantum Chemistry - 量子化学分子图学习框架.
  • Relational RNNs - Enhancement to standard memory architectures integrating relational reasoning capabilities.Theoretical and Principled Approaches
    关系 RNN - 增强了集成关系推理功能的标准内存架构。理论和原则方法
  • Deep Speech 2: End-to-End Speech Recognition in English and Mandarin - Deep learning system for speech recognition.
    Deep Speech 2: End-to-End Speech Recognition in English and Mandarin -用于语音识别的深度学习系统.
  • ImageNet Classification with Deep CNNs - Convolutional neural network for classifying large-scale image data.
    ImageNet Classification with Deep CNNs - 用于对大规模图像数据进行分类的卷积神经网络.
  • Variational Lossy Autoencoder - Combines VAEs and autoregressive models for improved image synthesis.
    变分有损自动编码器 - 结合 VAE 和自回归模型以改进图像合成。
  • A Simple NN Module for Relational Reasoning - A neural module designed to improve relational reasoning in AI tasks.
    用于关系推理的简单神经网络模块 - 旨在改进 AI 任务中关系推理的神经模块.

理论见解和原则性方法

跨学科和概念研究

效率和可扩展性技术

教材和教程

  • CS231n: Convolutional Neural Networks for Visual Recognition - Stanford University course on CNNs for visual recognition.
    CS231n:用于视觉识别的卷积神经网络 - 斯坦福大学视觉识别 CNN 课程。
  • The Annotated Transformer - Annotated, line-by-line implementation of the Transformer paper. Code is available here.
    The Annotated Transformer - Transformer 论文的带注释的逐行实现.代码可在此处获得。
  • The First Law of Complexodynamics - Blog post discussing the measure of system complexity in computational terms.
    The First Law of Complexodynamics - 讨论计算术语中系统复杂性度量的博客文章.
  • The Unreasonable Effectiveness of RNNs - Blog post demonstrating the versatility of RNNs.
    RNN 的不合理有效性 - 展示 RNN 多功能性的博客文章.
  • Understanding LSTM Networks - Blog post providing a detailed explanation of LSTM networks.
    了解 LSTM 网络 - 博客文章提供了 LSTM 网络的详细说明。